Partially linear single-index model with missing responses at random
نویسندگان
چکیده
This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are shown to be asymptotically normal, and the estimator for the nonparametric function is proved to be asymptotically normal at any fixed point. The bandwidth problem is also considered in this paper, a delete-one cross validation method is used to select the optimal bandwidth. A simulation study is conducted to evaluate the proposed methods. & 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Testing for additivity in partially linear regression with possibly missing responses
We consider a partially linear regression model with multivariate covariates and with responses that are allowed to be missing at random. This covers the usual settings with fully observed data and the nonparametric regression model as special cases. We first develop a test for additivity of the nonparametric part in the complete data model. The test statistic is based on the difference between...
متن کاملPartially linear varying coefficient models with missing at random responses
This paper considers partially linear varying coefficient models when the response variable is missing at random. The paper uses imputation techniques to develop an omnibus specification test. The test is based on a simple modification of a Cramer von Mises functional that overcomes the curse of dimensionality often associated with the standard Cramer von Mises functional. The paper also consid...
متن کاملBayesian Single Index Model with Covariates Missing at Random
Bayesian single index model is a highly promising dimension reduction tool for an interpretable modeling of the non linear relationship between the response and its predictors. However, existing Bayesian tools in this area suffer from slow mixing of the Markov Chain Monte Carlo (MCMC) computational tool and also lack the ability to deal with missing covariates. To circumvent these practical pro...
متن کاملLocal influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models
Single-index model is a potentially tool for multivariate nonparametric regression, generalizes both the generalized linear models(GLM) and the missing-link function problem in GLM. In this paper, we extend Cook’s local influence analysis to the penalized Gaussian likelihood estimator based on P-spline for the partially linear single-index model. Some influence measures, based on the minor pert...
متن کاملEstimation in Partially Linear Single-Index Panel Data Models with Fixed Effects
In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010